ELEMENTARY DIFFERENTIAL GEOMETRY

100 Points

Notes.

(a) Begin each answer on a separate sheet and ensure that the answers to all the parts to a question are arranged contiguously. I am allotting **4 points** for this.

- (b) Assume only those results that have been proved in class. All other steps should be justified.
- (c) \mathbb{R} = real numbers.
- 1. [24 points] Prove that the following maps $F: U \to V$ are C^{∞} diffeomorphisms.

(a) $U = \mathbb{R} = V$, $F(x) = x + x^3$. (b) $U = \mathbb{R}^2 = V$, $F(x, y) = (x, y + x^3)$. (c) $U = \mathbb{R}^2 = V$, F(x, y) = (x + p(x) - y, y - p(x)) where $p(x) \in C^{\infty}(\mathbb{R})$.

2. [24 points] For any $b \neq 0$, the parametrized plane curve $\alpha(t) = (e^{bt} \cos t, e^{bt} \sin t)$ is called a logarithmic spiral.

- (i) Compute the curvature $\kappa(t)$.
- (ii) For any fixed b, verify that the angle between $\alpha(t)$ and the tangent vector $\dot{\alpha}(t)$ is constant.
- (iii) For b = 1, find a unit-speed reparametrization of α .
- 3. [16 points] Let $\alpha(t)$ be a C^{∞} curve in \mathbb{R}^n .
 - (i) With n = 4, if $\alpha'(0) = (1, 0, -1, 1)$ and $\alpha''(0) = (2, 1, 0, -1)$, compute the corresponding unit tangent vector T(0), principal normal N(0) and curvature $\kappa(0)$.
 - (ii) With n = 3, if $\alpha'(0) = (1, 0, -1)$, $\alpha''(0) = (2, 1, 1)$ and $\alpha'''(0) = (3, -1, 2)$ compute T(0), N(0), B(0), $\kappa(0)$, $\tau(0)$.
- 4. [16 points]
 - (i) Give an example of a regular parametrized curve in \mathbb{R}^3 that has constant nonzero curvature and constant nonzero torsion everywhere.
 - (ii) If $\alpha(s)$ is a unit-speed curve in \mathbb{R}^3 with nonzero curvature such that N(s) is parallel to N(s) for every s, then prove that the curvature $\kappa(s)$ and torsion $\tau(s)$ are constant.

5. [16 points] Suppose $\sigma(x, y) = (\sigma_1(x, y), \sigma_2(x, y), \sigma_3(x, y))$ is a C^{∞} map from U to \mathbb{R}^3 where U is an open neighborhood of $(0, 0) \in \mathbb{R}^2$. Assume that $(\sigma_{1x}\sigma_{2y})(0, 0) \neq (\sigma_{1y}\sigma_{2x})(0, 0)$.

- (i) Apply the inverse function theorem to prove that there is a \mathcal{C}^{∞} function h(s,t) over some open neighborhood $U' \subset U$ of (0,0) such that $\sigma_3(x,y) = h(\sigma_1(x,y), \sigma_2(x,y))$ over U'.
- (ii) Assume that $\sigma(0,0) = (0,0,0)$. Fix (a_1, a_2, a_3) in \mathbb{R}^3 not parallel to $(\sigma_x \times \sigma_y)(0,0)$, and let H denote the plane $a_1T_1 + a_2T_2 + a_3T_3 = 0$. Prove that there is a neighborhood $U' \subset U$ of (0,0) such that $H \cap \sigma(U')$ is a regular parametrized curve.